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Exercise 43

(a) The axisymmetric initial-value problem is governed by

ut = κ

(
urr +

1

r
ur

)
+ δ(t)f(r), 0 < r <∞, t > 0,

u(r, 0) = 0 for 0 < r <∞.

Show that the formal solution of this problem is

u(r, t) =

ˆ ∞
0

kJ0(kr)f̃(k) exp(−k2κt) dk.

(b) When f(r) = Q
πa2

H(a− r), show that the solution is

u(r, t) =
Q

πa

ˆ ∞
0

J0(kr)J1(ak) exp(−k2κt) dk.

Solution

Part (a)

The PDE is defined for 0 < r <∞, so the Hankel transform can be applied to solve it. The
zero-order Hankel transform is defined as

H0{u(r, z)} = ũ(k, z) =

ˆ ∞
0

rJ0(kr)u(r, z) dr,

where J0(kr) is the Bessel function of order 0. Hence, the radial part of the laplacian in
cylindrical coordinates transforms as follows.

H0

{
∂2u

∂r2
+

1

r

∂u

∂r

}
= −k2ũ(k, z)

The partial derivative with respect to t transforms like so.

H0

{
∂nu

∂tn

}
=
dnũ

dtn

Take the zero-order Hankel transform of both sides of the PDE.

H0 {ut} = H0

{
κ

(
urr +

1

r
ur

)
+ δ(t)f(r)

}
The Hankel transform is a linear operator.

H0 {ut} = κH0

{
urr +

1

r
ur

}
+ δ(t)H0 {f(r)}

Use the relations above to transform the derivatives.

dũ

dt
= −κk2ũ+ δ(t)f̃(k) (1)
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The PDE has thus been reduced to an ODE. For t > 0, δ(t) = 0 and the ODE becomes

dũ

dt
= −κk2ũ,

which has the solution
ũ(k, t) = A(k)e−κk

2t.

To determine A(k), we have to use the provided initial condition. Take the zero-order Hankel
transform of both sides of it.

u(r, 0) = 0 → H0{u(r, 0)} = H0{0}
ũ(k, 0) = 0 (2)

Because of the delta function in equation (1), equation (2) is not what we will use. Integrate both
sides of equation (1) with respect to t from t = −ε to t = ε.

ˆ ε

−ε

dũ

dt
dt = −

ˆ ε

−ε
κk2ũ dt+

ˆ ε

−ε
δ(t)f̃(k) dt

Bring the constants out in front of the second and third integrals and evaluate the first one.

ũ(k, ε)− ũ(k,−ε) = −κk2
ˆ ε

−ε
ũ dt+ f̃(k)

ˆ ε

−ε
δ(t) dt

The integral of ũ over an infinitesimally small interval is 0, and the integral of the delta function
is 1.

ũ(k, ε)− ũ(k,−ε) = f̃(k) (3)

Because of equation (2), ũ(k,−ε) = 0. As a result of the delta function in the ODE, ũ jumps from
0 at t = 0 to f̃(k) the instant after and falls off exponentially. Hence,

ũ(k, t) = f̃(k)e−κk
2tH(t).

Since we’re only interested in the solution for t > 0, we can drop the Heaviside function.

ũ(k, t) = f̃(k)e−κk
2t, t > 0

We can get u(r, t) by taking the inverse Hankel transform of this.

u(r, t) = H−10 {ũ(k, t)}

It is defined as

H−10 {ũ(k, t)} =
ˆ ∞
0

kJ0(kr)ũ(k, t) dk.

Therefore,

u(r, t) =

ˆ ∞
0

kJ0(kr)f̃(k)e
−κk2t dk.
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Part (b)

If

f(r) =
Q

πa2
H(a− r),

then

f̃(k) = H0

{
Q

πa2
H(a− r)

}
.

The Hankel transform is a linear operator.

f̃(k) =
Q

πa2
H0 {H(a− r)}

Use the definition of the zero-order Hankel transform.

f̃(k) =
Q

πa2

ˆ ∞
0

rJ0(kr)H(a− r) dr

Make the substitution w = a− r.

f̃(k) =
Q

πa2

ˆ −∞
a

(a− w)J0[k(a− w)]H(w) (−dw)

Use the minus sign to switch the limits of integration.

f̃(k) =
Q

πa2

ˆ a

−∞
(a− w)J0[k(a− w)]H(w) dw

The Heaviside function is equal to 1 when w > 0 and is equal to 0 when w < 0.

f̃(k) =
Q

πa2

ˆ a

0
(a− w)J0[k(a− w)] dw

Make the substitution p = a− w.

f̃(k) =
Q

πa2

ˆ 0

a
pJ0(kp) (−dp)

Use the minus sign to switch the limits of integration.

f̃(k) =
Q

πa2

ˆ a

0
pJ0(kp) dp

Look up this integral in a table.

f̃(k) =
Q

πa2
· a
k
J1(ka)

Simplify the result.

f̃(k) =
Q

πak
J1(ka).

Substituting this expression for f̃(k) in the solution for u(r, t), we get

u(r, t) =

ˆ ∞
0

kJ0(kr)
Q

πak
J1(ka)e

−κk2t dk.

Therefore,

u(r, t) =
Q

πa

ˆ ∞
0

e−κk
2tJ0(kr)J1(ka) dk.
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