Exercise 43

(a) The axisymmetric initial-value problem is governed by

$$
\begin{aligned}
u_{t} & =\kappa\left(u_{r r}+\frac{1}{r} u_{r}\right)+\delta(t) f(r), \quad 0<r<\infty, t>0, \\
u(r, 0) & =0 \quad \text { for } 0<r<\infty .
\end{aligned}
$$

Show that the formal solution of this problem is

$$
u(r, t)=\int_{0}^{\infty} k J_{0}(k r) \tilde{f}(k) \exp \left(-k^{2} \kappa t\right) d k .
$$

(b) When $f(r)=\frac{Q}{\pi a^{2}} H(a-r)$, show that the solution is

$$
u(r, t)=\frac{Q}{\pi a} \int_{0}^{\infty} J_{0}(k r) J_{1}(a k) \exp \left(-k^{2} \kappa t\right) d k .
$$

Solution

Part (a)
The PDE is defined for $0<r<\infty$, so the Hankel transform can be applied to solve it. The zero-order Hankel transform is defined as

$$
\mathcal{H}_{0}\{u(r, z)\}=\tilde{u}(k, z)=\int_{0}^{\infty} r J_{0}(k r) u(r, z) d r,
$$

where $J_{0}(k r)$ is the Bessel function of order 0 . Hence, the radial part of the laplacian in cylindrical coordinates transforms as follows.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right\}=-k^{2} \tilde{u}(k, z)
$$

The partial derivative with respect to t transforms like so

$$
\mathcal{H}_{0}\left\{\frac{\partial^{n} u}{\partial t^{n}}\right\}=\frac{d^{n} \tilde{u}}{d t^{n}}
$$

Take the zero-order Hankel transform of both sides of the PDE.

$$
\mathcal{H}_{0}\left\{u_{t}\right\}=\mathcal{H}_{0}\left\{\kappa\left(u_{r r}+\frac{1}{r} u_{r}\right)+\delta(t) f(r)\right\}
$$

The Hankel transform is a linear operator.

$$
\mathcal{H}_{0}\left\{u_{t}\right\}=\kappa \mathcal{H}_{0}\left\{u_{r r}+\frac{1}{r} u_{r}\right\}+\delta(t) \mathcal{H}_{0}\{f(r)\}
$$

Use the relations above to transform the derivatives.

$$
\begin{equation*}
\frac{d \tilde{u}}{d t}=-\kappa k^{2} \tilde{u}+\delta(t) \tilde{f}(k) \tag{1}
\end{equation*}
$$

The PDE has thus been reduced to an ODE. For $t>0, \delta(t)=0$ and the ODE becomes

$$
\frac{d \tilde{u}}{d t}=-\kappa k^{2} \tilde{u}
$$

which has the solution

$$
\tilde{u}(k, t)=A(k) e^{-\kappa k^{2} t} .
$$

To determine $A(k)$, we have to use the provided initial condition. Take the zero-order Hankel transform of both sides of it.

$$
\begin{align*}
u(r, 0)=0 \quad \rightarrow \quad \mathcal{H}_{0}\{u(r, 0)\} & =\mathcal{H}_{0}\{0\} \\
\tilde{u}(k, 0) & =0 \tag{2}
\end{align*}
$$

Because of the delta function in equation (1), equation (2) is not what we will use. Integrate both sides of equation (1) with respect to t from $t=-\varepsilon$ to $t=\varepsilon$.

$$
\int_{-\varepsilon}^{\varepsilon} \frac{d \tilde{u}}{d t} d t=-\int_{-\varepsilon}^{\varepsilon} \kappa k^{2} \tilde{u} d t+\int_{-\varepsilon}^{\varepsilon} \delta(t) \tilde{f}(k) d t
$$

Bring the constants out in front of the second and third integrals and evaluate the first one.

$$
\tilde{u}(k, \varepsilon)-\tilde{u}(k,-\varepsilon)=-\kappa k^{2} \int_{-\varepsilon}^{\varepsilon} \tilde{u} d t+\tilde{f}(k) \int_{-\varepsilon}^{\varepsilon} \delta(t) d t
$$

The integral of \tilde{u} over an infinitesimally small interval is 0 , and the integral of the delta function is 1 .

$$
\begin{equation*}
\tilde{u}(k, \varepsilon)-\tilde{u}(k,-\varepsilon)=\tilde{f}(k) \tag{3}
\end{equation*}
$$

Because of equation (2), $\tilde{u}(k,-\varepsilon)=0$. As a result of the delta function in the ODE, \tilde{u} jumps from 0 at $t=0$ to $\tilde{f}(k)$ the instant after and falls off exponentially. Hence,

$$
\tilde{u}(k, t)=\tilde{f}(k) e^{-\kappa k^{2} t} H(t)
$$

Since we're only interested in the solution for $t>0$, we can drop the Heaviside function.

$$
\tilde{u}(k, t)=\tilde{f}(k) e^{-\kappa k^{2} t}, \quad t>0
$$

We can get $u(r, t)$ by taking the inverse Hankel transform of this.

$$
u(r, t)=\mathcal{H}_{0}^{-1}\{\tilde{u}(k, t)\}
$$

It is defined as

$$
\mathcal{H}_{0}^{-1}\{\tilde{u}(k, t)\}=\int_{0}^{\infty} k J_{0}(k r) \tilde{u}(k, t) d k .
$$

Therefore,

$$
u(r, t)=\int_{0}^{\infty} k J_{0}(k r) \tilde{f}(k) e^{-\kappa k^{2} t} d k
$$

Part (b)

If

$$
f(r)=\frac{Q}{\pi a^{2}} H(a-r),
$$

then

$$
\tilde{f}(k)=\mathcal{H}_{0}\left\{\frac{Q}{\pi a^{2}} H(a-r)\right\} .
$$

The Hankel transform is a linear operator.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \mathcal{H}_{0}\{H(a-r)\}
$$

Use the definition of the zero-order Hankel transform.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \int_{0}^{\infty} r J_{0}(k r) H(a-r) d r
$$

Make the substitution $w=a-r$.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \int_{a}^{-\infty}(a-w) J_{0}[k(a-w)] H(w)(-d w)
$$

Use the minus sign to switch the limits of integration.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \int_{-\infty}^{a}(a-w) J_{0}[k(a-w)] H(w) d w
$$

The Heaviside function is equal to 1 when $w>0$ and is equal to 0 when $w<0$.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \int_{0}^{a}(a-w) J_{0}[k(a-w)] d w
$$

Make the substitution $p=a-w$.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \int_{a}^{0} p J_{0}(k p)(-d p)
$$

Use the minus sign to switch the limits of integration.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \int_{0}^{a} p J_{0}(k p) d p
$$

Look up this integral in a table.

$$
\tilde{f}(k)=\frac{Q}{\pi a^{2}} \cdot \frac{a}{k} J_{1}(k a)
$$

Simplify the result.

$$
\tilde{f}(k)=\frac{Q}{\pi a k} J_{1}(k a) .
$$

Substituting this expression for $\tilde{f}(k)$ in the solution for $u(r, t)$, we get

$$
u(r, t)=\int_{0}^{\infty} k J_{0}(k r) \frac{Q}{\pi a k} J_{1}(k a) e^{-\kappa k^{2} t} d k .
$$

Therefore,

$$
u(r, t)=\frac{Q}{\pi a} \int_{0}^{\infty} e^{-\kappa k^{2} t} J_{0}(k r) J_{1}(k a) d k
$$

